MTH 301 Midterm Solutions

1. For groups G and H, their direct product
GxH={(9,h)|ge Gand h € H}
forms a group under the operation defined by
(g,h)(g',h") = (gq', hR'), for all g,g € G and h, W' € H.

(a) Show that every line N passing through the origin in R? is a
normal subgroup of G = (R?, +).
(b) For any such line NV as in (a), describe G/N.
(c) Show that G/N = R.
Solution. (a) As R? is a direct product R x R, it is a group under
component-wise addition. Any line passing through the origin in R?

has an equation of the form y = ma, where m denotes the slope of the
line. As a set, such a line is given by

N ={(z,mz) |z € R}.

Clearly, N < G, for if r,s € N, where r = (z,mz) and s = (y, my),
then we have

rs”t = (x,mz) + (—y, —my) = (x —y,m(z —y)) € N.

To show that N <G, observe that for any (2/,y’) € R? and (z, mz) € N,
we have

(x’,y’)(x,mm)(x’,y’)fl =@ +z—2,y +mz—y)=(xr,mz) € N.

This implies that gNg=' C N for all g € G, or in other words, N <G.

(b) By definition, G/N = {g+ N |g € G}, so for g = (2/,y') and N as
described in (a), the coset g + N is given by

g+ N=A{("+z,y +mz)|zeR}

That is, g + N is the set of all points on the line y — v = m(z — 2'),
which is parallel to N. In general, any line parallel to N has a equation
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given by (y — y9) = m(x — zp), and the set of all points on this line
equals the coset (xg,y0) + N. From this, we conclude that G/N is the
collection of all lines parallel to N.

(c) Consider the map ¢ : G — R defined by
o(x,y) =max —y, for all (z,y) € G.

Then clearly, ¢ is well-defined, for if (z,y) = (2/,y’), then x = 2’ and
y =1, and so
mx —y =ma' —y = o((x,y)) = o((2',y)).
Also, ¢ is a homomorphism, as
p((z,y) + (2y) =@+, y+y)
=m(z+2) = (y+y)
= (mz —y) + (ma’ —y)
= o((z,9)) + (=", 1))
The surjectivity of ¢ follows from the fact that for any » € R, we have
that o((0,—7r)) =r.

From the First Isomorphism Theorem, we have
G/Kerp = R.

It remains to show that Ker ¢ = N. But this follows from the definition
of ¢, as
(z,y) € Kerp <= o((z,y)) =0
<~ mx—y=20
= y=mx
< (z,y) € N.

. Let G be group and H, K < G. Then show that

(a) If H < K, then (G/H)/(K/H) = G/K
(b) If G = HK, then G/(H N K) = G/H x G/K.

Solution. (a) This result is popularly known as the Third Isomorphism
Theorem. First, note that K/H < G/H (which is left as an exercise).
To establish the isomorphism, define a map ¢ : G/H — G /K given by

Y(gH) = gK, for all gH € G/H.
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Then v is well-defined for the following reason

gH=g9gH — glgz_lH =H
= gng_IK:K ( since Y(H) = K)
= g =gpK
= Y(1H) = Y(g2H).

A
S WoiH goH) = b{argo H)  (since H < G)
= 192 K
= K gpK (since K 4G)
= Y(g1)v(92),

1 is a homomorphism. Moreover, 1 is surjective, as every coset gK €
G/K is the image of the coset gH € G/H under ¢. Therefore, by the
First Isomorphism Theorem, we have that

(G/H)/Kery =2 G/K.

So it remains to show that Kerty = K/H, but this follows from the
following argument

gH € Keryp <= (gH) =K
— gK =K
— ge K
< gH € K/H.

Hence the result follows.

(b) We know from class that if H, K <G, then HN K <G, from which
we can see that G/(H N K) is a group. Put N = H N K, and define a
map ¢ : G — G/H x G/K given by

6(g) = (gH, gK), for all g € G.
Note that ¢ is well-defined, for if g; = g9, then
99" =1 = (95 H, 919, K) = (H,K)  (since ¢(1) = (H, K))
—> 19, 'H=H and g19; 'K = K

= g1 = g2 and g1 K = go K
= ¢(92) = ¢(92).
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Moreover, ¢ is a homomorphism, as

o(g192) = (9192H, g192K)
(91 H)(92H), (91 K)(g2K)) (since H, K 1Q)

(g1H, 91 K)(g92H, g2 K) (by definition of a direct product)

= ¢(91)0(92)-

To show the surjectivity of ¢, take any (9H,¢'K) € G/H x G/K. Since
G = HK, we have that ¢ = hk and ¢’ = W'k’ for some h,h’ € H and
k,k' € K. Then then fact that H, K I G, would imply that gH = kH
and ¢ K = WK, and so (¢gH,¢'K) = (kH,h K). Hence

o(kk) = (kW H, kW K)

= (
= (kH,WK) (since H, K < @G)
= (9H,g'K),
which proves that ¢ is surjective.

Finally, by the First Isomorphism Theorem, we have
G/Ker¢ =2 G/H x G/K.
Furthermore,

geKer¢p <— (gH,gK)=(HK)
< gH =H and gK = K
< g€ Handge K
<~ ge HNK,

which establishes that Ker ¢ = H N K, and hence the result follows.

. Consider the set Qs = {£1,+i,+j,+k} having 8 elements with an
operation - satisfying the following relations

ii=j-j=k-k=—
ij=k jk=ik-i=j
(=1)- (—1) = +1

(a) Show that (Qs,-) is a group with +1 as its identity element. (Qs
is called the group of quaternions.)



(b) Is (®s, ) an abelian group? Explain why or why not.
(c¢) Show that every subgroup of (Qs, -) is normal.
Solution. (a)&(b) For simplicity, let us denote +1 by 1, and for any

a,b,x € Qg, we denote x -z by 2%, and a-b by ab. Since (—1)(—1) =1,
we have

o(-1)=2(ie.—1=(=1)""Yand —1=(1)(-1)"! = (-1)71),
or in other words

= (=1 = (=DHW). (1)

)
Moreover, i* = §%?* = (— )(—1) = 1, which implies that o(7) | 4, but
since i = —1, we infer that o(i) = 4 By an analogous argument we

can conclude that

o(+i) = o(xj) = o(xk) = 4. (2)

Since jk = i, we have j%k = ji, that is, ji = (=1)k, and a similar
argument can be used to derive all other relations of this type, namely

—1)i=kj=1i(—-1
(=1)j =ik =j(-1) (3)
Next, we establish that (—1)z = —x for all z € Qg. For the case

when z = %1, this follows from (1). So we choose x € Qg \ {£1},
say x = i. Suppose that (—1)i = y., Then it is clear that y # i (as
this would imply that —1 = 1), and from (1) we see that y £+ 1,4, so
y € {—i,+j + k}. Suppose that y = j, then we have

(1=
- i(—1)=37 (from (3))
— i(-1)j =1
= (—=1)ij=—-1 (from (3))
= (—1)k=-1,

and so k = 1, which gives a contradiction. Hence, y # j, and in a
similar fashion we can conclude that y # —j, +i, and by elimination



we can conclude that (—1)i = —i, and extending this to j, k (using
similar arguments), we have

(=Dk = =k = k(-1) (4)
Finally, since i? = j2 = k* = —1, we have the relations
=i =g kT =k

From Equations (1) - (4), we see that Qg is closed under its operation,
and every element in (Jg has a unique inverse. Hence, the relations
defined in the problem extend to a group operation on @)s. (Note that
the associativity of the operation, which has been implicitly assumed
in some of the arguments above, is a cumbersome but easy exercise.)
From the relations in (3) and (4), it is clear that Qg is non-abelian.

(c) Since |Qg| = 8, by the Lagrange’s Theorem, any proper subgroup
of Qs has to be of order 2 or 4. Furthermore, any subgroup of order 4
has index 2 in g, and hence has to be normal. So it suffices to show
that every subgroup of order 2 is normal in Qg.

Since any subgroup of order 2 is cyclic, it has to be generated by an
element in Qg of order 2. We showed above that —1 is the only element
of order 2. Since it generates subgroup H = {—1,1}, H is the only
subgroup of order 2, so it suffices to show that H <Q)g. For any g € Qg
and z € H, we have grg~! =1, if x =, and when z = —1, we have

g(-1)g ' =(-1)gg ' =—-1€H,
which shows that H < G, and the result follows.

. We know from class that the dihedral group
Dg = (r,s) = {1,r,1%,r% 5,57, 51, 7%}

is the group of symmetries of a square, which is generated by a rotation
r by 27 /4 and a reflection s.

(a) Find all subgroups of Dg order 2.
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(b) Show that Dg has exactly three subgroups of order 4, one of which
is cyclic, while the remaining two are non-cyclic. (Note that this
gives an example of a non-abelian group of order 4.)

(c) Assuming that isomorphic groups possess the same subgroup struc-
ture, establish that Qg is not isomorphic to Ds.

Solution. (a) Every subgroup of Dg of order 2 has to be generated
by an element of order 2. The elements in Dg of order 2 are the re-
flections s, sr, sr?, and sr3, and the rotation r? by 7. Hence, Dg has 5
distinct subgroups of order 2, namely the subgroups generated by these
elements.

(b) If a subgroup of order 4 is cyclic, then it has to be generated by an
element g € Dg of order 4. Since r is the only of order 4, we conclude
that

() = {Lrr )

is the only cyclic subgroup of Dg of order 4.

Suppose that H is a non-cyclic subgroup of Dg of order 4. Then by
Lagrange’s Theorem, every non-trivial element g € H is of order 2 or 4.
If o(g) = 4, then H is cyclic, which contradicts our assumption. Hence,
every non-trivial element of H is of order 2 ( = r ¢ H). In other
words, we have the following observation:

Observation: H has to contain 3 distinct elements of order 2.

Before we find all such order 4 subgroups, first note that since o(s) =
(s7%) = 2, so we have (sr*)(sr*) = 1, which implies that

srf = p7hg™l = prkg (*)

Using relation (*) and the observation made earlier, we can see that
{1,7%,s,57*} and {1,72, sr, sr°}

are the only other order 4 subgroups.

Exercise: Show that both the subgroups mentioned above are isomor-
phic to G = Zs X Zs. (Note that G is called the Klein-4 group.)

(c) We proved earlier, that Q3 has a unique subgroup of order 2, namely
{—1,1}. But we now know that Dg has five distinct subgroups of order
2, which shows that Dg cannot be isomorphic to Qs.
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Exercise: Can we conclude the same, using the structure of the order
4 subgroups?

. (Bonus) Let H = {z € C||z| = 1}. Then show that [10]

R/Z = H

Solution. First, realize that
Exercise: H < C*.

Then we define a map €2 : R — H given by
Q =e'%™) for all z € R.
Note that for any € R, we can see that
Q)| = [/®™)| = | cos(2mx) + isin(2nz)| =1 = Q(x) € H.

We will also need to the establish the following:
Exercise: Show that (2 is a well-defined surjective homomorphism.

By the First Isomorphism Theorem, we have that

R/Ker Q = H. (%)

To complete the argument, note that

seKerQQ <« Q(s)=1
— ei(27rs) -1
<= cos(2ms) +isin(2ms) =1
<= cos(2ms) = 1 and sin(27s) =0
< n €%,

which shows that Ker 2 = Z. Hence, the result now follows from (*).



