
MTH 301 Midterm Solutions

1. For groups G and H, their direct product

G×H = {(g, h) | g ∈ G and h ∈ H}

forms a group under the operation defined by

(g, h)(g′, h′) = (gg′, hh′), for all g, g ∈ G and h, h′ ∈ H.

(a) Show that every line N passing through the origin in R2 is a
normal subgroup of G = (R2,+).

(b) For any such line N as in (a), describe G/N .

(c) Show that G/N ∼= R.

Solution. (a) As R2 is a direct product R × R, it is a group under
component-wise addition. Any line passing through the origin in R2

has an equation of the form y = mx, where m denotes the slope of the
line. As a set, such a line is given by

N = {(x,mx) |x ∈ R}.

Clearly, N ≤ G, for if r, s ∈ N , where r = (x,mx) and s = (y,my),
then we have

rs−1 = (x,mx) + (−y,−my) = (x− y,m(x− y)) ∈ N.

To show that NEG, observe that for any (x′, y′) ∈ R2 and (x,mx) ∈ N ,
we have

(x′, y′)(x,mx)(x′, y′)
−1

= (x′ + x− x′, y′ +mx− y′) = (x,mx) ∈ N.

This implies that gNg−1 ⊂ N for all g ∈ G, or in other words, N EG.

(b) By definition, G/N = {g +N | g ∈ G}, so for g = (x′, y′) and N as
described in (a), the coset g +N is given by

g +N = {(x′ + x, y′ +mx) |x ∈ R}.

That is, g + N is the set of all points on the line y − y′ = m(x − x′),
which is parallel to N . In general, any line parallel to N has a equation
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given by (y − y0) = m(x − x0), and the set of all points on this line
equals the coset (x0, y0) +N . From this, we conclude that G/N is the
collection of all lines parallel to N .

(c) Consider the map ϕ : G→ R defined by

ϕ(x, y) = mx− y, for all (x, y) ∈ G.

Then clearly, ϕ is well-defined, for if (x, y) = (x′, y′), then x = x′ and
y = y′, and so

mx− y = mx′ − y′ =⇒ ϕ((x, y)) = ϕ((x′, y′)).

Also, ϕ is a homomorphism, as

ϕ((x, y) + (x′y′)) = ϕ(x+ x′, y + y′)
= m(x+ x′)− (y + y′)
= (mx− y) + (mx′ − y′)
= ϕ((x, y)) + ϕ((x′, y′)).

The surjectivity of ϕ follows from the fact that for any r ∈ R, we have
that ϕ((0,−r)) = r.

From the First Isomorphism Theorem, we have

G/Kerϕ ∼= R.

It remains to show that Kerϕ = N . But this follows from the definition
of ϕ, as

(x, y) ∈ Kerϕ ⇐⇒ ϕ((x, y)) = 0
⇐⇒ mx− y = 0
⇐⇒ y = mx
⇐⇒ (x, y) ∈ N.

2. Let G be group and H,K EG. Then show that

(a) If H ≤ K, then (G/H)/(K/H) ∼= G/K

(b) If G = HK, then G/(H ∩K) ∼= G/H ×G/K.

Solution. (a) This result is popularly known as the Third Isomorphism
Theorem. First, note that K/H E G/H (which is left as an exercise).
To establish the isomorphism, define a map ψ : G/H → G/K given by

ψ(gH) = gK, for all gH ∈ G/H.
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Then ψ is well-defined for the following reason

g1H = g2H =⇒ g1g
−1
2 H = H

=⇒ g1g
−1
2 K = K ( since ψ(H) = K)

=⇒ g1K = g2K
=⇒ ψ(g1H) = ψ(g2H).

As
ψ(g1H g2H) = ψ(g1g2H) (since H EG)

= g1g2K
= g1K g2K (since K EG)
= ψ(g1)ψ(g2),

ψ is a homomorphism. Moreover, ψ is surjective, as every coset gK ∈
G/K is the image of the coset gH ∈ G/H under ψ. Therefore, by the
First Isomorphism Theorem, we have that

(G/H)/Kerψ ∼= G/K.

So it remains to show that Kerψ = K/H, but this follows from the
following argument

gH ∈ Kerψ ⇐⇒ ψ(gH) = K
⇐⇒ gK = K
⇐⇒ g ∈ K
⇐⇒ gH ∈ K/H.

Hence the result follows.

(b) We know from class that if H,KEG, then H ∩KEG, from which
we can see that G/(H ∩K) is a group. Put N = H ∩K, and define a
map φ : G→ G/H ×G/K given by

φ(g) = (gH, gK), for all g ∈ G.

Note that φ is well-defined, for if g1 = g2, then

g1g
−1
2 = 1 =⇒ (g1g

−1
2 H, g1g

−1
2 K) = (H,K) (since φ(1) = (H,K))

=⇒ g1g
−1
2 H = H and g1g

−1
2 K = K

=⇒ g1H = g2H and g1K = g2K
=⇒ φ(g2) = φ(g2).
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Moreover, φ is a homomorphism, as

φ(g1g2) = (g1g2H, g1g2K)
= ((g1H)(g2H), (g1K)(g2K)) (since H,K EG)
= (g1H, g1K)(g2H, g2K) (by definition of a direct product)
= φ(g1)φ(g2).

To show the surjectivity of φ, take any (gH, g′K) ∈ G/H×G/K. Since
G = HK, we have that g = hk and g′ = h′k′ for some h, h′ ∈ H and
k, k′ ∈ K. Then then fact that H,K EG, would imply that gH = kH
and g′K = h′K, and so (gH, g′K) = (kH, h′K). Hence

φ(kh′) = (kh′H, kh′K)
= (kH, h′K) (since H,K EG)
= (gH, g′K),

which proves that φ is surjective.

Finally, by the First Isomorphism Theorem, we have

G/Kerφ ∼= G/H ×G/K.

Furthermore,

g ∈ Kerφ ⇐⇒ (gH, gK) = (H,K)
⇐⇒ gH = H and gK = K
⇐⇒ g ∈ H and g ∈ K
⇐⇒ g ∈ H ∩K,

which establishes that Kerφ = H ∩K, and hence the result follows.

3. Consider the set Q8 = {±1,±i,±j,±k} having 8 elements with an
operation · satisfying the following relations

i · i = j · j = k · k = −1

i · j = k, j · k = i, k · i = j

(−1) · (−1) = +1

(a) Show that (Q8, ·) is a group with +1 as its identity element. (Q8

is called the group of quaternions.)
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(b) Is (Q8, ·) an abelian group? Explain why or why not.

(c) Show that every subgroup of (Q8, ·) is normal.

Solution. (a)&(b) For simplicity, let us denote +1 by 1, and for any
a, b, x ∈ Q8, we denote x ·x by x2, and a · b by ab. Since (−1)(−1) = 1,
we have

o(−1) = 2 (i.e.− 1 = (−1)−1) and − 1 = (1)(−1)−1 = (−1)−1(1),

or in other words
−1 = (1)(−1) = (−1)(1). (1)

Moreover, i4 = i2i2 = (−1)(−1) = 1, which implies that o(i) | 4, but
since i2 = −1, we infer that o(i) = 4. By an analogous argument we
can conclude that

o(±i) = o(±j) = o(±k) = 4. (2)

Since jk = i, we have j2k = ji, that is, ji = (−1)k, and a similar
argument can be used to derive all other relations of this type, namely

(−1)k = ji = k(−1)

(−1)i = kj = i(−1)

(−1)j = ik = j(−1) (3)

Next, we establish that (−1)x = −x for all x ∈ Q8. For the case
when x = ±1, this follows from (1). So we choose x ∈ Q8 \ {±1},
say x = i. Suppose that (−1)i = y., Then it is clear that y 6= i (as
this would imply that −1 = 1), and from (1) we see that y ± 1, i, so
y ∈ {−i,±j ± k}. Suppose that y = j, then we have

(−1)i = j
=⇒ i(−1) = j (from (3))
=⇒ i(−1)j = −1
=⇒ (−1)ij = −1 (from (3))
=⇒ (−1)k = −1,

and so k = 1, which gives a contradiction. Hence, y 6= j, and in a
similar fashion we can conclude that y 6= −j,±i, and by elimination
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we can conclude that (−1)i = −i, and extending this to j, k (using
similar arguments), we have

(−1)i = −i = k(−1)

(−1)j = −j = i(−1)

(−1)k = −k = k(−1) (4)

Finally, since i2 = j2 = k2 = −1, we have the relations

i−1 = −i, j−1 = −j, k−1 = −k

From Equations (1) - (4), we see that Q8 is closed under its operation,
and every element in Q8 has a unique inverse. Hence, the relations
defined in the problem extend to a group operation on Q8. (Note that
the associativity of the operation, which has been implicitly assumed
in some of the arguments above, is a cumbersome but easy exercise.)
From the relations in (3) and (4), it is clear that Q8 is non-abelian.

(c) Since |Q8| = 8, by the Lagrange’s Theorem, any proper subgroup
of Q8 has to be of order 2 or 4. Furthermore, any subgroup of order 4
has index 2 in Q8, and hence has to be normal. So it suffices to show
that every subgroup of order 2 is normal in Q8.

Since any subgroup of order 2 is cyclic, it has to be generated by an
element in Q8 of order 2. We showed above that −1 is the only element
of order 2. Since it generates subgroup H = {−1, 1}, H is the only
subgroup of order 2, so it suffices to show that HEQ8. For any g ∈ Q8

and x ∈ H, we have gxg−1 = 1, if x =, and when x = −1, we have

g(−1)g−1 = (−1)gg−1 = −1 ∈ H,

which shows that H EG, and the result follows.

4. We know from class that the dihedral group

D8 = 〈r, s〉 = {1, r, r2, r3, s, sr, sr2, sr3}

is the group of symmetries of a square, which is generated by a rotation
r by 2π/4 and a reflection s.

(a) Find all subgroups of D8 order 2.
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(b) Show that D8 has exactly three subgroups of order 4, one of which
is cyclic, while the remaining two are non-cyclic. (Note that this
gives an example of a non-abelian group of order 4.)

(c) Assuming that isomorphic groups possess the same subgroup struc-
ture, establish that Q8 is not isomorphic to D8.

Solution. (a) Every subgroup of D8 of order 2 has to be generated
by an element of order 2. The elements in D8 of order 2 are the re-
flections s, sr, sr2, and sr3, and the rotation r2 by π. Hence, D8 has 5
distinct subgroups of order 2, namely the subgroups generated by these
elements.

(b) If a subgroup of order 4 is cyclic, then it has to be generated by an
element g ∈ D8 of order 4. Since r is the only of order 4, we conclude
that

〈r〉 = {1, r, r2, r3}
is the only cyclic subgroup of D8 of order 4.

Suppose that H is a non-cyclic subgroup of D8 of order 4. Then by
Lagrange’s Theorem, every non-trivial element g ∈ H is of order 2 or 4.
If o(g) = 4, then H is cyclic, which contradicts our assumption. Hence,
every non-trivial element of H is of order 2 ( =⇒ r /∈ H). In other
words, we have the following observation:

Observation: H has to contain 3 distinct elements of order 2.

Before we find all such order 4 subgroups, first note that since o(s) =
(srk) = 2, so we have (srk)(srk) = 1, which implies that

srk = r−ks−1 = rn−ks (*)

Using relation (*) and the observation made earlier, we can see that

{1, r2, s, sr2} and {1, r2, sr, sr3}

are the only other order 4 subgroups.

Exercise: Show that both the subgroups mentioned above are isomor-
phic to G = Z2 × Z2. (Note that G is called the Klein-4 group.)

(c) We proved earlier, that Q8 has a unique subgroup of order 2, namely
{−1, 1}. But we now know that D8 has five distinct subgroups of order
2, which shows that D8 cannot be isomorphic to Q8.
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Exercise: Can we conclude the same, using the structure of the order
4 subgroups?

5. (Bonus) Let H = {z ∈ C | |z| = 1}. Then show that [10]

R/Z ∼= H

Solution. First, realize that

Exercise: H ≤ C×.

Then we define a map Ω : R→ H given by

Ω = ei(2πx), for all x ∈ R.

Note that for any x ∈ R, we can see that

|Ω(x)| = |ei(2πx)| = | cos(2πx) + i sin(2πx)| = 1 =⇒ Ω(x) ∈ H.

We will also need to the establish the following:

Exercise: Show that Ω is a well-defined surjective homomorphism.

By the First Isomorphism Theorem, we have that

R/Ker Ω ∼= H. (*)

To complete the argument, note that

s ∈ Ker Ω ⇐⇒ Ω(s) = 1
⇐⇒ ei(2πs) = 1
⇐⇒ cos(2πs) + i sin(2πs) = 1
⇐⇒ cos(2πs) = 1 and sin(2πs) = 0
⇐⇒ n ∈ Z,

which shows that Ker Ω = Z. Hence, the result now follows from (*).

8


