MTH 301 Midterm Solutions

1. For groups G and H, their direct product

$$
G \times H=\{(g, h) \mid g \in G \text { and } h \in H\}
$$

forms a group under the operation defined by

$$
(g, h)\left(g^{\prime}, h^{\prime}\right)=\left(g g^{\prime}, h h^{\prime}\right), \text { for all } g, g \in G \text { and } h, h^{\prime} \in H
$$

(a) Show that every line N passing through the origin in \mathbb{R}^{2} is a normal subgroup of $G=\left(\mathbb{R}^{2},+\right)$.
(b) For any such line N as in (a), describe G / N.
(c) Show that $G / N \cong \mathbb{R}$.

Solution. (a) As \mathbb{R}^{2} is a direct product $\mathbb{R} \times \mathbb{R}$, it is a group under component-wise addition. Any line passing through the origin in \mathbb{R}^{2} has an equation of the form $y=m x$, where m denotes the slope of the line. As a set, such a line is given by

$$
N=\{(x, m x) \mid x \in \mathbb{R}\} .
$$

Clearly, $N \leq G$, for if $r, s \in N$, where $r=(x, m x)$ and $s=(y, m y)$, then we have

$$
r s^{-1}=(x, m x)+(-y,-m y)=(x-y, m(x-y)) \in N .
$$

To show that $N \unlhd G$, observe that for any $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ and $(x, m x) \in N$, we have

$$
\left(x^{\prime}, y^{\prime}\right)(x, m x)\left(x^{\prime}, y^{\prime}\right)^{-1}=\left(x^{\prime}+x-x^{\prime}, y^{\prime}+m x-y^{\prime}\right)=(x, m x) \in N .
$$

This implies that $g N g^{-1} \subset N$ for all $g \in G$, or in other words, $N \unlhd G$.
(b) By definition, $G / N=\{g+N \mid g \in G\}$, so for $g=\left(x^{\prime}, y^{\prime}\right)$ and N as described in (a), the coset $g+N$ is given by

$$
g+N=\left\{\left(x^{\prime}+x, y^{\prime}+m x\right) \mid x \in \mathbb{R}\right\} .
$$

That is, $g+N$ is the set of all points on the line $y-y^{\prime}=m\left(x-x^{\prime}\right)$, which is parallel to N. In general, any line parallel to N has a equation
given by $\left(y-y_{0}\right)=m\left(x-x_{0}\right)$, and the set of all points on this line equals the coset $\left(x_{0}, y_{0}\right)+N$. From this, we conclude that G / N is the collection of all lines parallel to N.
(c) Consider the map $\varphi: G \rightarrow \mathbb{R}$ defined by

$$
\varphi(x, y)=m x-y, \text { for all }(x, y) \in G
$$

Then clearly, φ is well-defined, for if $(x, y)=\left(x^{\prime}, y^{\prime}\right)$, then $x=x^{\prime}$ and $y=y^{\prime}$, and so

$$
m x-y=m x^{\prime}-y^{\prime} \Longrightarrow \varphi((x, y))=\varphi\left(\left(x^{\prime}, y^{\prime}\right)\right)
$$

Also, φ is a homomorphism, as

$$
\begin{aligned}
\varphi\left((x, y)+\left(x^{\prime} y^{\prime}\right)\right) & =\varphi\left(x+x^{\prime}, y+y^{\prime}\right) \\
& =m\left(x+x^{\prime}\right)-\left(y+y^{\prime}\right) \\
& =(m x-y)+\left(m x^{\prime}-y^{\prime}\right) \\
& =\varphi((x, y))+\varphi\left(\left(x^{\prime}, y^{\prime}\right)\right)
\end{aligned}
$$

The surjectivity of φ follows from the fact that for any $r \in \mathbb{R}$, we have that $\varphi((0,-r))=r$.
From the First Isomorphism Theorem, we have

$$
G / \operatorname{Ker} \varphi \cong \mathbb{R}
$$

It remains to show that $\operatorname{Ker} \varphi=N$. But this follows from the definition of φ, as

$$
\begin{aligned}
(x, y) \in \operatorname{Ker} \varphi & \Longleftrightarrow \varphi((x, y))=0 \\
& \Longleftrightarrow m x-y=0 \\
& \Longleftrightarrow y=m x \\
& \Longleftrightarrow(x, y) \in N .
\end{aligned}
$$

2. Let G be group and $H, K \unlhd G$. Then show that
(a) If $H \leq K$, then $(G / H) /(K / H) \cong G / K$
(b) If $G=H K$, then $G /(H \cap K) \cong G / H \times G / K$.

Solution. (a) This result is popularly known as the Third Isomorphism Theorem. First, note that $K / H \unlhd G / H$ (which is left as an exercise). To establish the isomorphism, define a map $\psi: G / H \rightarrow G / K$ given by

$$
\psi(g H)=g K, \text { for all } g H \in G / H
$$

Then ψ is well-defined for the following reason

$$
\begin{array}{rlr}
g_{1} H=g_{2} H & \Longrightarrow g_{1} g_{2}^{-1} H=H & \\
& \Longrightarrow g_{1} g_{2}^{-1} K=K & (\text { since } \psi(H)=K) \\
& \Longrightarrow g_{1} K=g_{2} K & \\
& \Longrightarrow \psi\left(g_{1} H\right)=\psi\left(g_{2} H\right) . &
\end{array}
$$

As

$$
\begin{aligned}
\psi\left(g_{1} H g_{2} H\right) & =\psi\left(g_{1} g_{2} H\right) & & (\text { since } H \unlhd G) \\
& =g_{1} g_{2} K & & \\
& =g_{1} K g_{2} K & & (\text { since } K \unlhd G) \\
& =\psi\left(g_{1}\right) \psi\left(g_{2}\right), & &
\end{aligned}
$$

ψ is a homomorphism. Moreover, ψ is surjective, as every coset $g K \in$ G / K is the image of the coset $g H \in G / H$ under ψ. Therefore, by the First Isomorphism Theorem, we have that

$$
(G / H) / \operatorname{Ker} \psi \cong G / K
$$

So it remains to show that $\operatorname{Ker} \psi=K / H$, but this follows from the following argument

$$
\begin{aligned}
g H \in \operatorname{Ker} \psi & \Longleftrightarrow \psi(g H)=K \\
& \Longleftrightarrow g K=K \\
& \Longleftrightarrow g \in K \\
& \Longleftrightarrow g H \in K / H .
\end{aligned}
$$

Hence the result follows.
(b) We know from class that if $H, K \unlhd G$, then $H \cap K \unlhd G$, from which we can see that $G /(H \cap K)$ is a group. Put $N=H \cap K$, and define a $\operatorname{map} \phi: G \rightarrow G / H \times G / K$ given by

$$
\phi(g)=(g H, g K), \text { for all } g \in G
$$

Note that ϕ is well-defined, for if $g_{1}=g_{2}$, then

$$
\begin{aligned}
g_{1} g_{2}^{-1}=1 & \Longrightarrow\left(g_{1} g_{2}^{-1} H, g_{1} g_{2}^{-1} K\right)=(H, K) \quad(\text { since } \phi(1)=(H, K)) \\
& \Longrightarrow g_{1} g_{2}^{-1} H=H \text { and } g_{1} g_{2}^{-1} K=K \\
& \Longrightarrow g_{1} H=g_{2} H \text { and } g_{1} K=g_{2} K \\
& \Longrightarrow \phi\left(g_{2}\right)=\phi\left(g_{2}\right) .
\end{aligned}
$$

Moreover, ϕ is a homomorphism, as

$$
\begin{aligned}
\phi\left(g_{1} g_{2}\right) & =\left(g_{1} g_{2} H, g_{1} g_{2} K\right) & & \\
& =\left(\left(g_{1} H\right)\left(g_{2} H\right),\left(g_{1} K\right)\left(g_{2} K\right)\right) & & \text { (since } H, K \unlhd G) \\
& =\left(g_{1} H, g_{1} K\right)\left(g_{2} H, g_{2} K\right) & & \text { (by definition of a direct product) } \\
& =\phi\left(g_{1}\right) \phi\left(g_{2}\right) . & &
\end{aligned}
$$

To show the surjectivity of ϕ, take any $\left(g H, g^{\prime} K\right) \in G / H \times G / K$. Since $G=H K$, we have that $g=h k$ and $g^{\prime}=h^{\prime} k^{\prime}$ for some $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$. Then then fact that $H, K \unlhd G$, would imply that $g H=k H$ and $g^{\prime} K=h^{\prime} K$, and so $\left(g H, g^{\prime} K\right)=\left(k H, h^{\prime} K\right)$. Hence

$$
\begin{aligned}
\phi\left(k h^{\prime}\right) & =\left(k h^{\prime} H, k h^{\prime} K\right) \\
& =\left(k H, h^{\prime} K\right) \quad(\text { since } H, K \unlhd G) \\
& =\left(g H, g^{\prime} K\right),
\end{aligned}
$$

which proves that ϕ is surjective.
Finally, by the First Isomorphism Theorem, we have

$$
G / \operatorname{Ker} \phi \cong G / H \times G / K
$$

Furthermore,

$$
\begin{aligned}
g \in \operatorname{Ker} \phi & \Longleftrightarrow(g H, g K)=(H, K) \\
& \Longleftrightarrow g H=H \text { and } g K=K \\
& \Longleftrightarrow g \in H \text { and } g \in K \\
& \Longleftrightarrow g \in H \cap K,
\end{aligned}
$$

which establishes that $\operatorname{Ker} \phi=H \cap K$, and hence the result follows.
3. Consider the set $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ having 8 elements with an operation \cdot satisfying the following relations

$$
\begin{gathered}
i \cdot i=j \cdot j=k \cdot k=-1 \\
i \cdot j=k, j \cdot k=i, k \cdot i=j \\
(-1) \cdot(-1)=+1
\end{gathered}
$$

(a) Show that $\left(Q_{8}, \cdot\right)$ is a group with +1 as its identity element. (Q_{8} is called the group of quaternions.)
(b) Is $\left(Q_{8}, \cdot\right)$ an abelian group? Explain why or why not.
(c) Show that every subgroup of $\left(Q_{8}, \cdot\right)$ is normal.

Solution. (a) \& (b) For simplicity, let us denote +1 by 1, and for any $a, b, x \in Q_{8}$, we denote $x \cdot x$ by x^{2}, and $a \cdot b$ by $a b$. Since $(-1)(-1)=1$, we have

$$
\left.o(-1)=2 \text { (i.e. }-1=(-1)^{-1}\right) \text { and }-1=(1)(-1)^{-1}=(-1)^{-1}(1),
$$

or in other words

$$
\begin{equation*}
-1=(1)(-1)=(-1)(1) \tag{1}
\end{equation*}
$$

Moreover, $i^{4}=i^{2} i^{2}=(-1)(-1)=1$, which implies that $o(i) \mid 4$, but since $i^{2}=-1$, we infer that $o(i)=4$. By an analogous argument we can conclude that

$$
\begin{equation*}
o(\pm i)=o(\pm j)=o(\pm k)=4 \tag{2}
\end{equation*}
$$

Since $j k=i$, we have $j^{2} k=j i$, that is, $j i=(-1) k$, and a similar argument can be used to derive all other relations of this type, namely

$$
\begin{align*}
& (-1) k=j i=k(-1) \\
& (-1) i=k j=i(-1) \\
& (-1) j=i k=j(-1) \tag{3}
\end{align*}
$$

Next, we establish that $(-1) x=-x$ for all $x \in Q_{8}$. For the case when $x= \pm 1$, this follows from (1). So we choose $x \in Q_{8} \backslash\{ \pm 1\}$, say $x=i$. Suppose that $(-1) i=y$., Then it is clear that $y \neq i$ (as this would imply that $-1=1$), and from (1) we see that $y \pm 1, i$, so $y \in\{-i, \pm j \pm k\}$. Suppose that $y=j$, then we have

$$
\begin{array}{ll}
& (-1) i=j \\
\Longrightarrow \quad & i(-1)=j \\
\Longrightarrow \quad i(-1) j=-1 \\
\Longrightarrow \quad(-1) i j=-1 \quad(\text { from }(3)) \\
\Longrightarrow \quad(-1) k=-1,
\end{array}
$$

and so $k=1$, which gives a contradiction. Hence, $y \neq j$, and in a similar fashion we can conclude that $y \neq-j, \pm i$, and by elimination
we can conclude that $(-1) i=-i$, and extending this to j, k (using similar arguments), we have

$$
\begin{align*}
& (-1) i=-i=k(-1) \\
& (-1) j=-j=i(-1) \\
& (-1) k=-k=k(-1) \tag{4}
\end{align*}
$$

Finally, since $i^{2}=j^{2}=k^{2}=-1$, we have the relations

$$
i^{-1}=-i, j^{-1}=-j, k^{-1}=-k
$$

From Equations (1) - (4), we see that Q_{8} is closed under its operation, and every element in Q_{8} has a unique inverse. Hence, the relations defined in the problem extend to a group operation on Q_{8}. (Note that the associativity of the operation, which has been implicitly assumed in some of the arguments above, is a cumbersome but easy exercise.) From the relations in (3) and (4), it is clear that Q_{8} is non-abelian.
(c) Since $\left|Q_{8}\right|=8$, by the Lagrange's Theorem, any proper subgroup of Q_{8} has to be of order 2 or 4 . Furthermore, any subgroup of order 4 has index 2 in Q_{8}, and hence has to be normal. So it suffices to show that every subgroup of order 2 is normal in Q_{8}.
Since any subgroup of order 2 is cyclic, it has to be generated by an element in Q_{8} of order 2 . We showed above that -1 is the only element of order 2. Since it generates subgroup $H=\{-1,1\}, H$ is the only subgroup of order 2 , so it suffices to show that $H \unlhd Q_{8}$. For any $g \in Q_{8}$ and $x \in H$, we have $g x g^{-1}=1$, if $x=$, and when $x=-1$, we have

$$
g(-1) g^{-1}=(-1) g g^{-1}=-1 \in H
$$

which shows that $H \unlhd G$, and the result follows.
4. We know from class that the dihedral group

$$
D_{8}=\langle r, s\rangle=\left\{1, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\}
$$

is the group of symmetries of a square, which is generated by a rotation r by $2 \pi / 4$ and a reflection s.
(a) Find all subgroups of D_{8} order 2.
(b) Show that D_{8} has exactly three subgroups of order 4 , one of which is cyclic, while the remaining two are non-cyclic. (Note that this gives an example of a non-abelian group of order 4.)
(c) Assuming that isomorphic groups possess the same subgroup structure, establish that Q_{8} is not isomorphic to D_{8}.

Solution. (a) Every subgroup of D_{8} of order 2 has to be generated by an element of order 2 . The elements in D_{8} of order 2 are the reflections $s, s r, s r^{2}$, and $s r^{3}$, and the rotation r^{2} by π. Hence, D_{8} has 5 distinct subgroups of order 2 , namely the subgroups generated by these elements.
(b) If a subgroup of order 4 is cyclic, then it has to be generated by an element $g \in D_{8}$ of order 4 . Since r is the only of order 4 , we conclude that

$$
\langle r\rangle=\left\{1, r, r^{2}, r^{3}\right\}
$$

is the only cyclic subgroup of D_{8} of order 4 .
Suppose that H is a non-cyclic subgroup of D_{8} of order 4 . Then by Lagrange's Theorem, every non-trivial element $g \in H$ is of order 2 or 4 . If $o(g)=4$, then H is cyclic, which contradicts our assumption. Hence, every non-trivial element of H is of order $2(\Longrightarrow r \notin H)$. In other words, we have the following observation:

Observation: H has to contain 3 distinct elements of order 2.
Before we find all such order 4 subgroups, first note that since $o(s)=$ $\left(s r^{k}\right)=2$, so we have $\left(s r^{k}\right)\left(s r^{k}\right)=1$, which implies that

$$
\begin{equation*}
s r^{k}=r^{-k} s^{-1}=r^{n-k} s \tag{}
\end{equation*}
$$

Using relation $\left(^{*}\right)$ and the observation made earlier, we can see that

$$
\left\{1, r^{2}, s, s r^{2}\right\} \text { and }\left\{1, r^{2}, s r, s r^{3}\right\}
$$

are the only other order 4 subgroups.
Exercise: Show that both the subgroups mentioned above are isomorphic to $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. (Note that G is called the Klein-4 group.)
(c) We proved earlier, that Q_{8} has a unique subgroup of order 2 , namely $\{-1,1\}$. But we now know that D_{8} has five distinct subgroups of order 2 , which shows that D_{8} cannot be isomorphic to Q_{8}.

Exercise: Can we conclude the same, using the structure of the order 4 subgroups?
5. (Bonus) Let $H=\{z \in \mathbb{C}| | z \mid=1\}$. Then show that

$$
\begin{equation*}
\mathbb{R} / \mathbb{Z} \cong H \tag{10}
\end{equation*}
$$

Solution. First, realize that
Exercise: $H \leq \mathbb{C}^{\times}$.
Then we define a map $\Omega: \mathbb{R} \rightarrow H$ given by

$$
\Omega=e^{i(2 \pi x)}, \text { for all } x \in \mathbb{R} .
$$

Note that for any $x \in \mathbb{R}$, we can see that

$$
|\Omega(x)|=\left|e^{i(2 \pi x)}\right|=|\cos (2 \pi x)+i \sin (2 \pi x)|=1 \Longrightarrow \Omega(x) \in H .
$$

We will also need to the establish the following:
Exercise: Show that Ω is a well-defined surjective homomorphism.
By the First Isomorphism Theorem, we have that

$$
\begin{equation*}
\mathbb{R} / \operatorname{Ker} \Omega \cong H \tag{*}
\end{equation*}
$$

To complete the argument, note that

$$
\begin{aligned}
s \in \operatorname{Ker} \Omega & \Longleftrightarrow \Omega(s)=1 \\
& \Longleftrightarrow e^{i(2 \pi s)}=1 \\
& \Longleftrightarrow \cos (2 \pi s)+i \sin (2 \pi s)=1 \\
& \Longleftrightarrow \cos (2 \pi s)=1 \text { and } \sin (2 \pi s)=0 \\
& \Longleftrightarrow n \in \mathbb{Z},
\end{aligned}
$$

which shows that $\operatorname{Ker} \Omega=\mathbb{Z}$. Hence, the result now follows from $\left(^{*}\right)$.

